Machine Learning Adalah
Belajar Workflow Machine Learning
Selanjutnya, kamu juga harus memahami proses atau workflow machine learning, yaitu:
Un-Supervised Learning
Jenis ini kebalikan dari supervised learning yaitu data yang diolah tidak memiliki label dan sistem tidak mengetahui output yang benar. Jenis ini memiliki dua tipe yaitu clustering dan dimensionality reduction yang biasa digunakan untuk data transaksional. Contoh machine learning jenis ini adalah identifikasi segmen konsumen, deteksi anomali, dan lain sebagainya.
Machine Learning dan Deep Learning: Meningkatkan Kemampuan Komputasi dan Analisis Data
Di era digital yang serba cepat ini, Machine Learning (ML) dan Deep Learning (DL) telah muncul sebagai pendorong utama kemajuan teknologi. Kedua teknologi ini merevolusi segala bidang kehidupan, dari perawatan kesehatan hingga keuangan, dengan meningkatkan kemampuan komputasi dan membuka cakrawala baru untuk analisis data.
Puskomedia: Pendamping Anda dalam Transformasi Digital
Sebagai perusahaan teknologi masa depan, Puskomedia menyediakan layanan dan pendampingan terkait dengan Machine Learning dan Deep Learning: Meningkatkan Kemampuan Komputasi dan Analisis Data. Kami memahami bahwa pemanfaatan teknologi ini dapat menjadi kompleks, oleh karena itu kami hadir untuk membantu Anda memaksimalkan potensi ML dan DL untuk kemajuan bisnis Anda. Dengan keahlian dan komitmen kami, Puskomedia siap menjadi pendamping Anda dalam perjalanan transformasi digital.
Machine learning adalah percabangan dari Artificial Intelligence atau AI yang fokus pada penggunaan data serta algoritma dalam meningkatkan keakuratan data. Wawasan yang dihasilkan melalui proses ini dapat mendorong pengambilan keputusan terhadap pembuatan aplikasi maupun kemajuan bisnis. Secara ideal, machine learning diperlukan dalam memengaruhi key growth metrics secara optimal. Terlebih lagi, teknologi ini sangat berperan dalam perkembangan dunia data.
Dengan pertumbuhan big data yang semakin pesat, tidak heran bila permintaan pasar dari profesi data terus meningkat. Di sinilah peran penting machine learning dalam memperhitungkan posisi big data perusahaan. Namun, meski vital dikuasai, survei dari Kaggle menunjukkan, masih sedikit tenaga profesional, khususnya Data Scientist, menguasai berbagai bidang dari machine learning, seperti supervised machine learning, unsupervised machine learning, computer vision, dan sebagainya.
Padahal, fungsi machine learning perlu diutamakan dalam dunia data. Sebagai salah satu skill yang relevan dan perlu dikuasai sebagai profesional data, baca lebih lanjut peran krusial machine learning bagi berbagai profesi yang ada. Jika kamu saat ini tertarik untuk berkarier di bidang machine learning, simak artikel ini sampai akhir untuk tahu info lengkap mengenai machine learning!
Sejarah Machine Learning
Sejarah machine learning dapat ditelusuri kembali ke pertengahan abad ke-20, dengan munculnya bidang cybernetics dan kecerdasan buatan (AI). Cybernetics yang dikembangkan pada akhir 1940-an adalah pendekatan interdisipliner untuk memahami proses kontrol dan komunikasi baik dalam sistem hidup maupun tak hidup. Kecerdasan buatan, yang muncul pada 1950-an, difokuskan pada pengembangan mesin yang dapat melakukan tugas-tugas yang biasanya membutuhkan kecerdasan manusia seperti pembelajaran, pemecahan masalah, dan pengambilan keputusan.
Aplikasi praktis pertama dari pembelajaran mesin adalah di bidang pengenalan pola, di mana algoritma dikembangkan untuk mengenali karakter tulisan tangan dan ucapan. Pada 1960-an dan 1970-an, para peneliti mengembangkan algoritma untuk pohon keputusan dan jaringan saraf, yang masih digunakan sampai sekarang dalam pembelajaran mesin. Pada 1980-an dan 1990-an, algoritma pembelajaran mesin digunakan dalam aplikasi seperti pengenalan gambar, pengenalan ucapan, dan pemrosesan bahasa alami.
Pada awal tahun 2000-an, ketersediaan data dalam jumlah besar dan peningkatan kekuatan pemrosesan komputer menyebabkan kebangkitan minat dalam pembelajaran mesin. Para peneliti mulai mengembangkan algoritma dan teknik baru untuk memproses dan menganalisa kumpulan data besar, yang kemudian dikenal sebagai “big data“.
Pengembangan algoritma yang didasarkan pada jaringan saraf tiruan telah menghasilkan terobosan di berbagai bidang seperti pengenalan gambar dan pemrosesan bahasa alami. Saat ini, pembelajaran mesin digunakan dalam berbagai aplikasi, termasuk keuangan, perawatan kesehatan, transportasi, dan hiburan.
Ini telah menjadi alat penting untuk bisnis dan organisasi yang ingin membuat keputusan berdasarkan data dan mengotomatiskan proses. Karena jumlah data terus bertambah, dan seiring dengan kemajuan dalam daya komputasi dan algoritma yang terus dibuat, kemungkinan machine learning akan terus memainkan peran yang semakin penting di banyak bidang kehidupan kita.
Machine Learning dan Deep Learning: Meningkatkan Kemampuan Komputasi dan Analisis Data
Di era digital ini, volume data yang begitu besar terus membanjiri dunia maya. Menelusuri dan mengelola data semacam itu menjadi sebuah tantangan, namun teknologi kecerdasan buatan (AI) menawarkan solusi melalui dua pilar utamanya, yaitu Machine Learning (ML) dan Deep Learning (DL). Kedua teknologi ini merevolusi kemampuan komputasi dan analisis data, membawa kita pada babak baru inovasi.
Manfaat Machine Learning dan Deep Learning
Penerapan ML dan DL telah membawa banyak manfaat bagi berbagai industri, di antaranya:
Buat Project Machine Learning
Setelah menguasai fundamental, memahami workflow, dan menguasai tools machine learning, selanjutnya kamu bisa mulai latihan membuat berbagai project machine learning seperti:
Kamu bisa memanfaatkan berbagai dataset asli dari sumber-sumber yang bisa diakses secara publik seperti Towards Data Science.
Rekomendasi Tempat Belajar Machine Learning dengan Mentor Expert
Jika kamu ingin mempelajari lebih banyak mengenai machine learning, kamu bisa belajar di Bootcamp Data Science Digital Skola. Kelas data science Digital Skola cocok untuk pemula untuk mempersiapkan skill dan portofolio agar lebih siap kerja. Berikut bocoran beberapa materi yang akan diajarkan:
Tidak hanya belajar hardskill, kamu juga akan dibantu mengasah softskill, membangun portofolio, membentuk professional branding hingga mendapatkan bantuan penyaluran kerja. Cari tahu info lengkapnya dengan klik button di bawah ini!
Machine learning merupakan pembelajaran mesin yang mempelajari beberapa hal di dalamnya seperti algoritma, ilmu statistik, dan lainnya. Machine learning merupakan teknologi bagian dari Artificial Intelligence. Ketika seseorang melakukan proses pengolahan data, sebagian besar orang membutuhkan algoritma machine learning untuk menyelesaikan atau mencari solusi dari permasalahan data yang ada. Algoritma machine learning pun sangat beragam dan digunakan sesuai dengan masalah data yang sesuai.
Algoritma sendiri merupakan suatu proses langkah demi langkah yang tersusun untuk menyelesaikan permasalahan. Algoritma machine learning sendiri sangat beragam dan sudah sering digunakan untuk menyelesaikan permasalahan data dalam berbagai bidang seperti kesehatan, pendidikan, bisnis, keuangan, dan masih banyak lainnya. Kira-kira apa saja ya algoritma machine learning yang cukup sering digunakan dan bagaimana cara kerja machine learning? Yuk, simak artikel berikut ini!
Naive Bayes merupakan salah satu algoritma supervised learning yang sederhana dan cukup sering digunakan. Algoritma ini menggunakan dasar Teori Bayes di dalamnya. Algoritma ini memiliki data training (data yang sudah terdapat label kelas) dan data testing (data yang belum memiliki label kelas). Algoritma Naive Bayes bekerja dengan cara memaksimalkan nilai suatu kelas. Kelas yang memiliki probabilitas tertinggi akan masuk ke dalam salah satu dari label-label yang tersedia.
Baca juga : 3 Jenis Algoritma Machine Learning yang Dapat Digunakan di Dunia Perbankan
Jika pada algoritma supervised learning salah satu tujuan kita adalah untuk mengetahui label kelas pada data, maka pada unsupervised learning tidak berlaku demikian. K-Means merupakan salah satu algoritma supervised learning yang mana cara kerjanya adalah mengklaster atau mengelompokkan data sesuai dengan karakteristik atau kemiripan data menjadi beberapa klaster sesuai dengan nilai k yang telah ditentukan. Pada algoritma ini dibutuhkan centroid atau nilai pusat serta menghitung jarak kedekatan data dengan centroid. Algoritma ini dilakukan secara berulang sampai tidak ada perubahan anggota dalam masing-masing kelompok.
KNN atau K-Nearest Neighbour merupakan salah satu algoritma supervised learning yang mengklasifikasikan atau mengelompokkan data ke dalam beberapa kelompok berdasarkan kemiripan sifat dari data. Algoritma ini hampir mirip dengan algoritma K-Means, yang membedakan adalah pada K-Means melakukan proses clustering sedangkan pada KNN melakukan proses klasifikasi. Terkadang orang menyebut algoritma ini dengan sebutan algoritma malas dikarenakan pada algoritma ini tidak mempelajari cara mengkategorikan data akan tetapi hanya mengingat data yang sudah ada.